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Direct Calculation of Crystalline Thermal Expansion and Molecular Reorientation from Non- 
bonded lnteratomie Potential Anharmonieity and Thermal Amplitudes 

BY DONALD E. WILLIAMS 
Department  o f  Chemistry,  University o f  Louisville, Louisville, Kentucky  40208, U.S.A.  

(Received 13 April 1971) 

Non-bonded interatomic potential functions were altered to allow for the effects of vibration and an- 
harmonicity by relating the mean displacement to the mean-square vibrational amplitude through the 
anharmonicity constant, K. Vibrational amplitudes were calculated in the harmonic approximation. 
The repulsive coefficient, B, of the potential was increased sufficiently to cause the minimum of the 
potential to shift by the amount of the displacement. The apparent lattice energy was then minimized 
in the usual manner. The method was checked against experiment by calculation of the lattice constants 
of noble gases at several temperatures, and of anthracene at two temperatures. The method differs from 
usual calculations of the Grtineisen type in that calculation of molecular-orientation change with tem- 
perature is possible. The anthracene molecular orientation was calculated at 95 and 290°K. 

Introduction 

The total calculation of crystal structures composed of 
rigid molecules of known dimensions is possible in 
principle. One needs only to minimize the free energy 
of a large collection of molecules using the appropriate 
nonbonded interatomic potential functions. The cal- 
culation is simplified if the observed space group 
symmetry is assumed. The contribution of thermal vi- 
brational motion to the free energy may be included 
by a calculation of the normal lattice modes in the 
quasi-harmonic approximation (Cochran, 1963; Kitai- 
gorodskii & Mirskaya, 1964; Leibfried & Ludwig, 
1961). 

Since thermal effects on the lattice constants and 
crystal structures are usually small, a second level of 
approximation is to neglect thermal effects. The lattice- 
energy minimization then refers to a hypothetical 
crystal structure at absolute zero and no zero-point 
vibrational energy (Williams, 1966, 1967, 1970, and 
references therein). This type of calculation is of con- 
siderable interest and utility. 

At a third level of approximation, very rapid calcu- 
lations of molecular orientations can be achieved, for 
example, by least squares using quadratic nonbonded 
repulsion-only potentials (Williams, 1969). This method 
is of practical interest to crystallographers in solving 
unknown crystal structures. The lattice constants (and 
space group) should be known for the repulsion-only 
calculation; but these are usually readily obtainable 
by X-ray diffraction. The calculated crystal structure, 
if not a false minimum, can serve as a starting point for 
refinement of the crystal structure using amplitudes of 
the observed X-ray structure factors (Neumann, 1970, 
1971, Williams, 1968). 

An interesting application is the prediction of ther- 
mal structural transitions in the solid state. Obviously, 
some kind of thermal information must be input to 
predict a structural transition that occurs at a certain 
temperature. The most sophisticated approach would 
be a detailed analysis of the normal lattice modes, as 

mentioned above. A practical, approximate method of 
including thermal effects in the lattice-energy calcu- 
lation would reduce the effort required in such calcu- 
lations. 

Finally, calculation of thermal expansion and ther- 
mal molecular reorientation are of interest in them- 
selves. A method based on individually thermally 
altered potentials might successfully predict and cal- 
culate anisotropic thermal expansion, as well as mole- 
cular reorientation. 

Thermal corrections 

The method of thermal correction has been described 
previously (Bartell, 1963; Williams, 1966). The non- 
bonded interatomic potential is expanded in a Taylor 
series in the displacement, u = r -  re: 

g = E(re) + uE'(re) + ½u2E"(r~) + 16u3E'"(re). 

For the two atoms at equilibrium, the mean value of 
the force is zero, which leads to the result :* 

dE _ 0 = fiE " (re) + ½u--2E " ' (re) 
dr 

or ~ = Ku 2, where K = - E" ' ( re ) /2E"(re ) .  
The method of altering the potentials used in this 

work is as follows. The repulsive part of the non-bonded 
interatomic potential is increased just enough to dis- 
place the potential minimum by ft. The alteration is 
anisotropic if the thermal motion is anisotropic. The 
depth of the altered potential well is less than the 
original, but the anharmonicity constant, K, of the 
altered well is essentially unchanged. 

Throughout this paper the nonbonded potential is 
is of the (exp-6)  form: 

E =  - A r - 6  + B exp ( -  Cr) . 

* The factor 3 in the K equation given by Williams (1966) 
is a typographical error. 
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The exponent, C, is held fixed and B is increased to the 
thermal ly  altered B', where 

B'/B=[re/(re+ fi)]v exp (C~).  

The lattice energy is then minimized using the ( e x p -  6) 
potential  with thermal ly  altered B' .  A separate alter- 
at ion is made for each nonbonded  contact, depending 
on ft. 

The molecule is assumed to be rigid, with mean-  
square atomic vibrat ional  ampli tudes given by (Cruick- 
shank, 1956a): 

/,/2(!, r~) = PT1 + (1 × r~) t L (1 × r l ) .  

Here, I is a unit  vector in the direction of the displace- 
ment  (and parallel  to the non-bonded interatomic con- 
tact direction), r~ is an atomic position relative to the 
center of  libration, and T and L are the (3 x 3) transla- 
t ional  and l ibrat ional  thermal  tensors. No correlation 
tensor is needed in the anthracene case because of  the 
]" site symmetry (Schomaker & Trueblood,  1968). The 
mean  displacement is calculated by averaging the mean- 
square displacement of  the two atoms involved, in the 
direction of  the non-bonded interaction. 

For  purposes of  calculating B' ,  either experimental  
or theoretical values of T and L may  be used. Experi- 
mental  values may  be obtained directly f rom X-ray 
diffraction data or by a r igid-body analysis of  indivi- 
dual  anisotropic temperature factors. Theoretical cal- 
culations of  the thermal  tensors have been made  by 
G o l d m a n  (1968) for noble gas crystals, and by Pawley 
(1967) for anthracene. Cruickshank (1956b) has also 
discussed the variat ion of molecular  thermal  ampli-  
tudes with temperature in anthracene. 

A convergence acceleration technique was applied 
when evaluating the lattice sums (Williams, 1971). The 
reciprocal lattice sum was neglected. For  the noble gas 
structures, contacts to 10 A were considered, with 
convergence constant  0.15, and the estimated m a x i m u m  
lattice-energy error was < 0.01%. The r -6 lattice sums 
agreed within this error to the values for $6 given by 
Wallace & Patrick (1965) for the face-centered cubic 
structure. For  anthracene, contacts to 6 A were con- 
sidered, with convergence constant 0.20 and estimated 
m a x i m u m  lattice-energy error < 1%. These error esti- 
mates refer only to the convergence of  the lattice sum, 
and thus do not include errors in the nonbonded  
potential  functions. 

Table 1. Properties of  noble gas crystals at 0 °K and corresponding potentials (kcal.mole -1 and A) 

Quantity Ne Ar Kr Xe 
ao 4"46368 a 5-31110 ~ 5-64587 e 6" 1317 a 
A Hs(O °K) 0"448 e 1" 846 e 2" 666 e 3" 828 e 
dZE/daZ 1"6192s 4"5836t 6"2906t 7" 1497s 
u2--(0 °K) 0"0267g 0"0117g 0"0070g 0"0048g 
A 108"57 1292"9 2578"0 6337"7 
B 45415 161454 482220 359793 
C 4"36 3"58 3"57 3"11 
re 3" 157 3"830 4"074 4"445 
E(re) -- 0-062 -- 0-0230 -- 0"331 -- 0"465 
K 3"12 2"57 2"53 2'23 

a Batchelder, Losee, & Simmons (1967) 
b Peterson, Batchelder, & Simmons (1966) 
c Losee & Simmons (1968) 
d Sears & Klug (1962) 

e Pollack (1964) 
f Horton (1968) 
g Goldman (1968) 

Ne 

Ar 

Kr 

Xe 

Table 2. Lattice constants of  noble gas crystals at various temperatures 
0°K based 3Tel4 based 

(°K) u --~- Observed Calculated difference difference 
0 0.0267 4"46368 4"46368 0-00000 -0.00747 
6 0.0278 4.46416 4.46798 0.00382 -0.00365 

12 0.0309 4"47150 4"48324 0.01174 0.00427 
18 0"0350 4.49304 4.50051 0.00747 0.00000 

0 0.0117 5"31110 5-31110 0.00000 -0.00857 
20 0.0150 5.31789 5.32206 0.00417 -0-00440 
40 0.0243 5"34766 5.35658 0.00892 0.00035 
60 0"0361 5.39264 5-40121 0-00857 0.00000 

0 0.0070 5"64587 5.64587 0.00000 -0"00580 
30 0.0142 5"66394 5"67163 0"00769 0.00189 
60 0.0270 5"71046 5"71869 0.00823 0.00243 
90 0.0421 5"76799 5"77379 0.00580 0.00000 

0 0.0048 6"1317 6"1317 0"00000 -0"0090 
40 0.0148 6"1542 6.1627 0.0085 -0.0004 
80 0.0305 6.2067 6.2137 0.0070 -0.0020 

120 0"0485 6"2646 6"2736 0"0090 0"0000 
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Noble gas crystal structures 

The crystal structures of the noble gases were used to 
test the accuracy of the calculated thermal expansion 
by this method. Preliminary calculations were made 
using the potentials of Mason & Rice (1954). The 
results were not particularly satisfactory for thermal 
expansion. The anharmonicity constant, K, is sensitive 
to the values of C, which are given by Mason & Rice 
as 4-6076, 3.6213, 3.0325, and 3.4231 for Ne, Ar, Kr, 
and Xe, respectively. In particular, the calculated ther- 
mal expansion of Kr was too small, caused by the low 
value of C for Kr. 

We, therefore, made new evaluations of the noble 
gas potentials, including the exponent, based on the 
crystal properties at absolute zero temperature shown 
in Table 1. There was a large upward adjustment of C 
for krypton, smaller downward adjustments for neon 
and xenon, with only a small change for argon. The 
crystal properties at 0°K are not corrected for zero- 
point vibrations, since the lattice-energy calculation 
was made with thermally altered B', as indicated above. 

A check on the experimental exponent values was 
made by comparison with the theoretical calculations 
of Gilbert & Wahl (1967) for Nez and Ar2. A graphical 
fit was made based on their augmented, asymptotic 
self-consistent field (AASCF) calculation. In the range 
1.6-2.6 A, the value of C for Ne was 4.70. In the range 
2.0-2.65 A, the value of C for Ar was 3.44. The agree- 
ment for Ar is fair, but the theoretical value for Ne 
agrees better with the value given by Mason & Rice. 

Table 2 shows values obtained for the lattice con- 
stants. Listed temperatures are approximately ¼, ½, and 
¼ of the critical temperature of each substance. Above 
about 3Tc/4, lattice vacancies become significant in 
krypton (Losee & Simmons, 1968). The calculated ex- 
pansions are always too large; obviously the fit could 
be improved by adding another adjustable parameter, 
which would scale down the anharmonicity constant K. 

The values given in Table 2 do show considerable 
success for the method, even without an additional 
adjustment of K. In the xenon example, the calculated 

thermal expansion between 0 and 120°K is 0.1419 A 
compared to the observed expansion of 0.1329 A. 

Some applications of interest would not require 
temperatures below To~4. In the range Td4 <_ T<_ 3T~/4, 
the potentials can be adjusted to give a better fit. In 
this case, the calculated lattice constant is set at the 
higher temperature, 3Td4, instead of 0°K. The last 
column of Table 2 shows that a rather good fit is 
obtained over this range. Maximum error in the calcu- 
lated lattice constant over this temperature range is 
-0.00440 A, or -0 .08  % for Ar at 20°K. The root- 
mean-square relative error is 0.05 %. Maximum error 
in the calculated expansion is only 6 % for Ar, Kr, and 
Xe, and increases to 20 % for Ne, where the amount of 
expansion is small. 

Anthracene crystal structure 

Assumed dimensions of the anthracene molecule (of 
D2a symmetry) are shown in Table 3. These coordi- 
nates reproduce the interatomic distances given in 
Table 4(c), 95°K, of Mason (1964). The hydrogen 
repulsion and attraction centers were placed 1.027 A 
from the carbons (Williams, 1965). Table 3 also shows 
the thermal tensors of Mason, for which the principal 
translational and librational axes are assumed coin- 
cident with the molecular axes L, M, and N. Table 4 
shows the non-bonded potentials (Williams, 1970) 
which were used. 

Table 4. Non-bonded potentials for hydrocarbons 
(kcal.mole -~ and A) 

Quantity C. . .C  C . . .H  H . . . H  
A 512.69 111.82 24.39 
B 71782 8503 2171 
C 3.60 3.67 3.74 
ro 3-854 3"355 3"319 
E(ro) -0"0888 -0"0402 --0-0094 
K 2"58 2"68 2"73 

For the lattice-energy minimization, all first and 
second derivatives of the lattice energy were evaluated 

Table 3. Assumed anthracene molecular coordinates, and thermal tensors (A and rad) 

Atom X Y Z 
D 0.0000 1.4023 0.0000 
E 1.2249 0.7140 0.0000 
F 2.4831 1.4142 0.0000 
G 3.6586 0.7105 0.0000 
d 0.0000 2.4293 0.0000 
f 2.4992 2.4411 0.0000 
g 4.5520 1.2170 0.0000 

95 °K 290 °K 
[ 0 " 0 1 6 9 0 " 0 0 0 0 0 . 0 0 0 0 ] [ 0 . 0 4 8 4 0 . 0 0 0 0  

T 0.0049 0.0000 0"0289 
0"0081 

0"00025 0"00000 0"00000 ] [ 0"00395 0"00000 
L 0"00025 0"00000 0"00222 

0"00078 

0.0000 ] 
0.0000 
0.0256 
0-00000 ] 
0.00000 
0-00293 
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in the trial model, which initially was taken as the ob- 
served structure given by Mason. The list of non- 
bonded contacts ( ~  900 contacts to 6 ,~) was retained 
and several Gauss-Newton iterations were performed 
with it. Then a new contact list was generated, and 
iterations continued until the lattice energy decreased 
by less than 0.0005 kcal.mole -1 per cycle. Initial 
values of the calculated lattice energies were -21.374 
kcal.mole - t  at 95°K and -19.032 kcal.mole -~ at 
290°K. Final minimized values were -21.735 
kcal.mole - t  at 95°K and -19.205 kcal.mole -1 at 
290 °K. Observed values for the heat of sublimation of 
anthracene range from 21.6 to 25.0 kcal.mole-L A 
recently reported value is 23.54 kcal.mole -~ (Kelley & 
Rice, 1964). 

The final values of the lattice constants and mole- 
cular orientation matrices are given in Table 5. The 
calculated thermal expansions are all larger than the 
observed values, but they agree with the experimental 
anisotropy. The direction of change in the fl angle was 
correct. The orientation-difference matrices may be 
expressed approximately as three rotations 0i about 
Cartesian axes i = 1,2,3. Observed reorientation angles 
are -0 .6 ,  -1 .0 ,  and - 0 . 7  °, compared to calculated 
values of - 0.7, - 0.3, and - 0.3 °. 

The calculated difference in unit-cell volume is 23.6 
A 3 compared to the observed volume difference of 
17.0 A 3. Thus, the calculated volume expansion is 
about 40% too large. We note that both the calcu- 
lated and observed volume expansions are much larger 
than the disagreement between the calculated and 
observed volumes at a given temperature. It would be 
a trivial matter, of course, to adjust the potentials 
so that an exact fit would be obtained for the cell 
volume at a given temperature. 

Discuss ion  

The present model for thermal expansion is closely 
related to equation (8.12) of Leibfried & Ludwig 
(1961)" 

a - a = 6 a =  -eeI2P +aa2/A 

where a is the spacing of a one-dimensional lattice, 
indicates the harmonic approximation, l a n d  ~ are half 
the second and third derivatives of the potential at 
a-- ~, and i is the mean thermal energy in the harmonic 
approximation. We assume that the external stress, a, 
is zero. Only nearest-neighbor interactions are con- 
sidered, so that g=re. Noting that g=-t2E"(re)U2, w e  

obtain: 

~ a =  - E ' " ( r e ) u 2 / 2 E " ( r e )  . 

Thus, our altered potentials would lead to the theore- 
tically predicted thermal expansion in the quasi-harmo- 
nic approximation for a linear chain with only nearest- 
neighbor interactions. 

In three dimensions, additional nearest-neighbor 
interactions can be categorized as being predominately 
in the direction of u 2, or predominately perpendicular 
to u 2. The first category would increase the thermal 
expansion, while the second would decrease the ex- 
pansion, with some cancellation occuring. The latter 
effect is discussed by Barron (1957). This contraction 
occurs even in the simple harmonic approximation. 
Thus, we would expect that inclusion of the perpen- 
dicular terms in u 2 would improve the agreement be- 
tween the observed and calculated expansions. 

A referee has also pointed out that a lot of T comes 
from acoustic vibrational modes, where the close 
atoms are moving together, and there would be no 
contribution to ft. Our method assumes independent 
atomic vibration, and thus would lead to a too-large 
calculated thermal expansion. 

Recent calculations based on shifts in the lattice 
vibrational spectrum with temperature have yielded 
poorer than the present agreement for the noble gases. 
Birknese (1965) calculated the thermal expansion of 
argon ~ 5 0 %  too large. Leech & Riessland (1964) 
calculated the thermal expansion of krypton ,-,20% 
too large. In both cases assumed Lennard-Jones po- 
tentials were used. Leech & Riessland (1965) report 
the interesting result that inclusion of anharmonic 
terms decreases the thermal expansion and improves 
agreement with experiment. 

In principle, molecular orientation changes can be 
calculated from the variation of the lattice spectrum 
with orientation. Such a calculation would be tedious, 
and recent theoretical investigations have dealt only 
with the thermal expansion (Ludwig, 1967). While the 
quantitative agreement for the anthracene molecular 
orientation is not as good as desired, all orientation 
changes are in the proper direction. 

We note that the C. • • C, C. • • H, and H.  • • H poten- 
tials were not adjusted to fit the compressibility in an 
analogous way as was done for the noble gas potentials. 
Future improvements in these hydrocarbon potentials 
(especially the values of C) might also improve the 
agreement for thermal expansion and molecular re- 
orientation. Also, the mean-square amplitudes of vi- 
bration used for anthracene are considerably less ac- 
curate than those for the noble gases. 

Although we have neglected internal molecular vi- 
brations, these could also be fed into the calculation 
if known (Warshel & Lifson, 1970). Another possible 
refinement of the calculation would be to include 
directional effects caused by the anisotropic polariza- 
bility of anthracene (Davies & Coulson, 1952; Davies, 
1952; Haugh & Hirschfelder, 1955). The importance 
of directional nonbonded attractive forces has been 
contested by Sternlicht (1964) and by Cheng & Ny- 
burg (1969). 

This work was supported in part by U.S. Public 
Health Service Research Grant GM-16260, 



88 D I R E C T  C A L C U L A T I O N  OF C R Y S T A L L I N E  T H E R M A L  E X P A N S I O N  

Lattice constants 

Orientation matrices (x 104) 

Observed* 

Calculated 

Table 5. Total calculation o f  the anthracene crystal structure 
Final values of parameters at 95 and 290°K compared with experiment. 

Observed* 

Calculated 

95°K 290°K Difference 
a(A) 8.443 8-562 0.119 
b 6.002 6.038 0.036 
c 11-124 11.184 0.060 
B(°) 125.6 124.7 -0-9 
v(A 3) 458-4 475.3 16-9 
a 8-164 8.354 0.190 
b 6.023 6.101 0.078 
c 11.016 11.135 0.119 
fl 124.3 123.9 -0 .4  
V 447.5 471.1 23.6 

95°K 
[ --5117 -3035 8038 ] 

1311 -8970 -4222 
8491 -3214 4192 

-4860 -2682 8318 ] 
-1366 -9167 -3754 

8632 -2961 4089 

290°K 
[ - 4 9 4 1 - 3 1 7 5 8 0 9 4 ]  [ 9 9 9 8  

-1274 -8944 -4287 -0122 
8600 -3149 4015 0172 

--4804 -2813 8307 ] [ 9999 
-1335 -9127 -3863 -0054 

8668 - 2965 4009 0049 

* Mason (1964) 

Difference 
0124 --0171 ] 
9999 0098 

-0096 9998 
0055 --0049 ] 
9999 0126 

--0126 9999 
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